Electrochemistry, Electrolysis and Corrosion

Electrochemistry is the branch of physical chemistry that studies the relationship between electricity, as a measurable and quantitative phenomenon, and identifiable chemical change, with either electricity considered an outcome of a particular chemical change or vice versa. These reactions involve electric charges moving between electrodes and an electrolyte (or ionic species in a solution). Thus electrochemistry deals with the interaction between electrical energy and chemical change. Electrochemistry has also important applications in the food industry, like the assessment of food/package interactions, the analysis of milk composition, the characterization and the determination of the freezing end-point of ice-cream mixes, the determination of free acidity in olive oil. he spontaneous redox reactions of a conventional battery produce electricity through the different chemical potentials of the cathode and anode in the electrolyte. Electrolysis requires an external source of electrical energy to induce a chemical reaction, and this process takes place in a compartment called an electrolytic cell. There are various extremely important electrochemical processes in both nature and industry, like the coating of objects with metals or metal oxides through electrodeposition and the detection of alcohol in drunken drivers through the redox reaction of ethanol. Corrosion is an electrochemical process, which reveals itself in rust or tarnish on metals like iron or copper and their respective alloys, steel and brass. Attempts to save a metal from becoming anodic are of two general types. Anodic regions dissolve and destroy the structural integrity of the metal.While it is almost impossible to prevent anode/cathode formation, if a non-conducting material covers the metal, contact with the electrolyte is not possible and corrosion will not occur. Corrosion can be prevented by coating, sacrificial anodes.